The High Statistical Cost of Loss to Follow-up

Elizabeth R. Brown, ScD

PI, MTN SDMC

Associate Member

Fred Hutchinson Cancer Research Center

Outline

- Preliminaries
 - Study design
 - Intent-to-treat analyses
 - Efficacy vs. Effectiveness
- Examples
 - How can a product be efficacious but not effective?
 - How could this affect future trials (ASPIRE)?
- Conclusions

Statistical design of a study

Or how do we decide how many participants to enroll?

- First, we calculate the number of events
 - Effect size of the intervention
 - Power
 - The probability of having a positive result given that the intervention is effective
 - False positive rate (alpha level)
 - Null hypothesis
- Next the number of participants

Getting to the number of events

Number of participants

Design summarized

Design summarized

Efficacy vs. effectiveness

- Efficacy is a person-level measure (The biomedical impact of the drug on risk)
- Effectiveness is a population-level measure

Efficacy vs. effectiveness, cont.

What is adherence?

- Ideally, adherence reflects how a woman would use a product when it is provided.
- Full adherence is not possible when a woman does not have the product.
- Two types
 - Study adherence: Adhering to the protocol
 - Product adherence: Adhering to the product when provided
- We cannot have full product adherence without full study adherence!

Why does adherence matter?

- The primary analysis in a clinical trial is always intent-to-treat
- Other ways to think of this:
 - What is the effect of the randomization on HIV acquisition in the population?

Or

- What affect does providing a woman an HIV prevention strategy and counseling her to follow it have on HIV incidence?
- This is different than "does the product protect against HIV?"

Why the difference?

Product with efficacy = 100%, HIV incidence = 5%

Impact on a clinical trial

To investigate the impact of intermittent loss to follow-up on the results of a study like ASPIRE, we

- Simulated data according to the design parameters in ASPIRE
- Varied the levels of drop-out and return to study
- Graphical summaries of the impact on the study results focusing on power and efficacy estimates

MTN-020 ASPIRE

- Baseline infection rate: 3.9%/year
- Effectiveness: 60%
- Loss-to-follow-up rate: 1%/mo (15% overall)
- Power=90%, alpha=0.05
- Events=120
- □ N=3476
- Null hypothesis: rule out effectiveness<25%</p>

Nowhere in these calculations do we allow for intermittent loss to follow-up.

What is the potential effect of this on the study?

Results

Results

Results, cont.

Results from 1000 clinical trials with 90% retention

Percent who miss next visit

Summary

- Even while maintaining the desired overall retention rate, intermittent loss to follow-up can negatively impact the results of a trial
 - Loss of power
 - Underestimate of potential effectiveness
 - Inability to estimate efficacy
- Ensuring women return for visits or have other arrangements that allow them to stay on product is CRITICAL!

Further comments

- Examples shown are best case scenario
 - More likely that in practice, a woman's ability to adhere to the protocol is related to her HIV risk – this could result in even more severe underestimation of potential effectiveness

Thank you!